SETS, RELATIONS,
FUNCTIONS & BINARY
OPERATION

OPERATIONS ON SETS

1. Symbols: Some commonly used symbols
are as follows:

Symbols Meaning
= implies
'S belongs to
AcB A 1s a subset of B
= implies and 18 implied by
7 does not belong to
s.t. such that
" for every
3 there exists

1ff if and only if



and
a 1s a divisor of b
set of natural numbers
set of integers
set of real numbers
set of complex numbers
set of rational numbers
2. Sets: A set (class, aggregate, ensemble) S
i1s a well-defined collection of objects, or
symbols, called elements or members of the
set.
3. Representation of Sets
(a) Roaster Method (Listing Method):
We list all the elements and enclose
them in curly brackets; e.g.,
(1) 12,3, 5, 7} 1s the set of prime number
less than 10.
(11) {a, e, 1, o, u} 1s a set of vowels in

oom—2Z5 e

English alphabet.
(1z) {1, 2, 3, 4, .....} 1s the set of natural
numbers.

(b) Set Builder Method (Property
form): The set of all elements of n,
which satisfy a given property p (say)
is represented by {x : p(x)} or {x|p(x)}
where the symbols " or ‘|’ stands for



‘such that’ and p(x) means x has the
property p, e.g.,
B= {x:x=2n,neRlor{x|x=2n,n R}
= {2,4,6,8, .....}
4. Number Sets: We give below number sets:
(1) The set of natural numbers
N={1, 2.8, 4,0}
(iz) The set of integers
Zorl={..,-3,-2,-1,0,1, 2, 3, ..... H
(ii1) The set of positive integers
Zorl'=1,223,..) =N
(iv) The set of negative integers
Zorl ={1,-2,-3, ...}
(v) The set of non-negative integers
W =the set of whole nos. =140, 1, 2, 3, .....}
(vi) The set of non-zero integers
Zi=%1, 22,43, ...}
(vit) The set of all real numbers 1s denoted
by R.
(viii) The set of all irrational numbers R — Q.
A number which is real but not rational
1s called an irrational number.

e.g.me, 2, .3 ,log 2, etc.
5. Subset: If A and B are two sets such that
every element of A is alsoelementof Bi.e.,



xe A= x e B, then we say that A is a subset
of B or A is contained in B, it is denoted by
A < B, some authors write it as A — B.

6. Proper and Improper Subsets: The null
set ¢ 1s subset of every set and every set 1s
subset of itself, i.e., $ < A and A < A for
every set A. They are called improper
subsets of A. Thus every non-empty set has
two subsets, 1.e., A has two improper subset
iff it is non-empty. All other subsets of A
are called its proper subsets.

Thus if Ac B, A # B, A # ¢, then A is said to
be proper subset of B.

7. Number of Subset of a finite set: If set A
has n elements, then A has 2" subsets.

8. Power Set: The family (set) of all subsets
of a Set A 1s called the power set of A. It is
denoted by P(A).

Thus, n(A) =p = n (P(A)) = 2°.

Some Important Deductions:
(1) AcA, VA
(i) é< A, VA
(111) A c U (the universal set), Vv Ain U
(iv) A=B< AcB.BcA.
9. Theorem: If a finite set S has n elements,
then the proper set of S has 2" elements.



Proof: Let a set S contains n elements. The
number of the subsets which have no
elements at all ="C_ = 1. The null set is a
subset of every set.

The no. of those subsets of S each of which
has exactly one element =no. of elements in
the set n ="C,.

The no. of those subsets of S each of which
has exactly two elements out of n elements
of S="C,.

The no. of those subsets of S each of which
has exactly r elements out of n elements of
S="C.

Similarly, the no. of those subsets of which
has exactly n elementsof S="C =1.

Therefore, total number of subsets of S
= %0, #7C, F°C, ¥ 5. #C, ¥t "0
= T N0 % e B8 Fnc ]
=(1+1)*=2"

Hence, if S is a finite set of order n, then the

power set of S has 2" elements. We can say

that a set with three elements has 2°,1.e., 8
subsets.

10. Union of two sets: The union of sets A and
B, written A U B is the set of all elements



that are in A or in B or in A and B both.
Thus, xeAuBoxeAorxeB, and
xeAuBoxeAorx ¢ B.
For example, let A={a, b, c}, B={c, g, h}
then, AuB=1{a,b,c, g, h}

Important Deductions:
(1) A UA = A 1.e., the union of set 1s
indempotent.

(11) A u U =U; where U is the universal set.

(111) AU d=A;where A is any set.

(iv) AcAuB;BcAuB.

(v) AuB=BuA (Commutative law)

(vt) Let A and B be two finite sets such that
n(A) = p, n (B) = q, then, min.n (A U B)
=max. (p, q) and max. n (Au B)=p +q.

(vit) (AuB)uUC=AuU((Bu () (Associative
law)



(vitt) A U A' = U where A is any subset of the
universal set U and A' is complement.
Rule to write A Bwhen A and B are both in
Roaster form:
(1) Write all the elements of A.

(i1) Write all the elements of B, dropping the
element which are in A.

In Venn diagram, the shaded region under the
boundary curve represents A U B.

Union of more than two sets: If A , A, A, ... A
are the subset of U and n € N, then the set

n

n

&
A UA, uA:;u ..... A"=UA,.

consists of the members of U which belongs to at
least of the subsets of A.
For example:if A = {a,b,c,d}, B={c, d,e, f}
C ={aceg,D=1{b,cd,g}
AuBuUCuD ={a,b,cd,e,f, g}

11. Intersection of two sets: The intersection
of two sets A and B is the set of elements
which are common to both A and B and is
denoted by A N B.

This 1s read as ‘the intersection of A and B’
or simply ‘A intersection B'.



Thus,
xeAnBexeAandx e B.
AnB={x:xe Aandx e B}.
Also,xe AnBox e Aorx ¢ B.
Forexample:1f A = a.c,d,e, g.1,r.0,t,ul and
B ={a,e, 1,0,u}
then, AnB ={a, e 1,0,u}
If A and B are disjoint sets (i.e., if A and B have
no element in common), then, A n B =¢.
In Venn diagram, the shaded region under the
thick boundary curve represents A N B.

U

Intersection of more than two sets: 1t A, A, A,

..... A arethe subsetof U and n € N, then the set
ANAnNnAnNnAn..NnA =(‘\A;

= x:xeA Vi's
Important Deductions:
1) Ané = ¢
(i) AnU = A



(i11)

(1v)
(v)
(vt)
(vit)
(viit)

(ix)

(x)
(x1)

ANA A: 1.e., intersection of sets 1s

indempotent.

A

AnB
AnB B
AnB c Au B
AcB = An B=A
Let A and B be finite sets such that
n(A) =p, n(B) =q.
then, min. n (AN B)=0,
max. n (A N B) =min. (p, q)
AnB = BnAi.e., the intersection of
sets 18 commutative
AnA = ¢
ANB)NNC = An (B nC):ie., the

intersection of sets 1s associative.

/A

N

12. Complement: The complement of a set A
1s the set of all elements of the universal

set U which do not belong to A and is denoted

by A' (or A°).
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.
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For Example: IfA={2 4,6, ...}

and U=N={1,2,3,....}, then
A'=281.8. 5. T}
also, (A)=12,4,6,..}=A.

Important Deductions:
(i) AnA' = ¢
(i) AVA' = |J
() U=¢;: ¢=U
(ww) (A')'=A
(v) A-B =AnB
13. Difference of Sets: Difference of two sets
A and B, denoted by A — B, is the set of all
elements of A which are not in B.

A B

Arsarirrarrnramrarimrnres
R E e e
RIS LIS rIo I,

A b4 h b d b b bt b b

------------------------

TP IR PT PP
PP P
POTIRIP ISP DI

7z A — B

E=1B-A
Thus, xeA-B& xeAandxe¢ B
and so xeA-Be x¢Aandx e B
Also, A-B= {x:xea,x¢ B}

For example,
G) A={1, 2, 3}. B={3, 4, 5}



Then,A-—B={1, 2}
B—-A=1{4, 5}
(i1) R —Q 1s the set of all irrational numbers.
Important Deductions:
(i) A—BcA,B-AcB
(1i1) AcBoA-B=¢
(it) A—=B#B-A
(iv) A=B=A-(AnB)
(v) A-=B,B-=A, An Bare pair wise disjoint.
14. Symmetric Difference: It is the set of all
those elements which are only in A or only
in B, i.e., (A-B) U (B - A) is called the
symmetric difference of A and B. It is
usually denoted by A A B.

Also, AAB=AuB-(An B).
For example,if A={a,e, 1,0, u}l, B=1{b, d, e, 1}
then, AAB=(AuB -(AnB)
= {5:1, h:l d: e, i'.- D! u} - {e: 1}
= {a, b, d, o, u}

AAB




15. Cartesian Product of two sets: Cartesian
product of sets A and B denoted by A X B, is
the set of all ordered pairs of which first
coordinates are elements of the set A and
second coordinates, the elements of set B.

Symbolically
AXB = {(a,b)la € Aand b € B}

BxA = {b,a)|b € Band a € A} is the
cartesian product of B and A.
For example:
Let A = {a b}, B=1{1, 2, 3}
Then, AXB = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2),

(b, 3)}
Important Deductions:

(1) In a ordered pair, the order of occurrence
of members 1s of prime importance.
Ordered pair (a, 1) is not the same as
ordered pair (1, a@) 1.e., (a, 1) # (1, a).

(11) Two ordered pairs (a, b) and (¢, d) are equal
ifand onlyifa=cand b =d, 1.e.,
(a, b) = (¢, d)<= a=cand b=d.
(i1z1) The cartesian product of two sets 1s not
commutative
1.e., AXB # BxXA
But,n (AXB) = n(BXA)



(iv) If A haspelements and B has g elements,
then A X B has pqg elements 1.e., if n(A)
=p,n(B)=qg = n (A xXB) =pq.

(v) fA=dorB=¢,then AXB=¢

(vi) BcCoAXBcAXC

16. Some Important Laws:
(1) Commutative laws

(a) AuB
(b) AnB
(c) A-B
(d) AAB
(e) AXB
(i1) De-Morgan’s law
(a) A—(Bu O)
(b) A—(Bn CO)
(c) (AuB)
(d) (AuB)
(111) Distributive law
(a) Au(Bn O
(b) An(Bu O
(c) AX(Bn O
(d) AxBu ()
(e) AX(B-C)
(iv) Associative law
(a) AuBYuC
b) AnBnNnC

In % 1 1

H

BuUA
Bn A
B —
BAA
BXxA

A

A-B)n((A-0)
A-BuUA-=-0)
A'nB
A'nB

AuB) n(Au 0O
ANnBUANC
AxXxB)n(AxC)
(AXB)u (A xC(C)
AXB-AXC

AuBu
An(Bn (O



(c) AABYAC = AABACO
(d) A-B)—C = A-(B-0)
(e) AXB)xXC = AXx(BxC(O)

17. Some more results: Let A, B and C be
finite sets and U be the finite universal set,
then

(a) n(AuB) = n(A)+nB)—n (An B)
(b) n (A v B) n(A) + n(B); if A and B
are disjoint set]

n(A) — n(A n B)

nA-=B)+n(AnB)

n[(A=B)u (B-A)]

nl[(AuA)u (A N B)

nA)+nB)—-2n(AnB)

n (neither A nor B)

n (AuB)

n (U —-nAuvuB)

n (AN B)

n(U)—nAn B)

nA)+nB)+nC)

—n(AnB)-n(Bn C)

—n (ANnC) + n (AnBNC)

(h) n (set of elements in exactly two of the

sets A, B, O)
=n(AnB)+n(BnNnC+
n(CNmA-=-3n(AnBnC(C)

(c) n(A-B)
1e., n(A)
(d) n (AAB)

(e) n(A'nB')

() n(A'uB)

(g) n(AuBUC)



(1) n (setof elements which are in at least
two of the sets A, B, C)

= nAnB)+nAnC)+

nBNCO)=-2n(AnBnO)

(1) n (setof elements which are in exactly
one of the sets A, B, C)

=nA)+n B +nC)-

2nAnB)=2n (Bn ©€)

—2n (AnOC)+3n(An (O

(k) If A, B, C are three sets, then the

distributive law can be easily

illustrated by Venn diagrams shown

below:




B C

(AnB)u (An C)
RELATIONS

1. If A and B are two sets, then a relation from
A to B i1s a subset of the product A X B.
Symbolically if R is a relation from A to B
e, if Rc A XBand(a, b) € R, then we can



say that a is related to b by the relation R

and write it as aRb. If (@, b) ¢ R then, a K b.
For example:
Let A={1, 2, 3, 4, 5}, B={1, 3}

then, we set a relation from AtoBas:aR b
iffa<b;:ae A, beB
Then, R={(1,1),(1, 3), (2,3)}cAXB

2. Domain and Range of relation: The set
of all the first elements of the ordered pairs
which belong to R 1s called the domain and
the set of all the second elements of that
ordered pairs is called the range.

Thus, Dom. R = A; Range R < B.

For example, in the relation {6, 8), (3, 7), (1, 2)}
the domain is (6, 3, 1) and range 1s (8, 7, 2).

3. Composition of Relations: IR c A X B
and S ¢ B X C be two relations then
composition of the relations R and S is
denoted by SoR < A X C. It is defined by
(a,c) e (So R)iff 3 b € B such that (a, b) e R
and (b, ¢) € S.

For Example,
Let A = {1,2, 3}, B={a, b, ¢, d},
C={a, B, v}
R(cAxB) ={q1,a),(d,o0), (2, d);




ScBx0() = {(a, o), (a,y), (c B)
Then, SoR(cAXxC)= {(1, o), (1,7, 1, B)}
Note: One should be careful in computing the
relation R o S. Actually R o S starts with S and
S o R starts will R. In general SoR#R o S.
4. Inverse Relation: If R be a relation from A
set to a set B, then the relation R™ from set
B to the set A 1s defined as the inverse
relation R.
Symbolically, R™' = {(b, a) : (a, b) € R}
Hence, it is clear that
(i) aRbe bR'a
(11) dom. R™' = range R and range R™'
=dom. R
(111) (R"H'=R.
5. Void relation in a Set: Consider the set
A X A, then every subset of A X A 1s a relation
in A. Again the null set ¢ 1s a subset of
A X A, therefore, the null set ¢ is also a
relation in A. This relation is called the void
relation in A.
For any ordered pair (a, b) with a € A and

be Awehavea R bie., (a, b) ¢ R.

For example, let A = (2, 3, 5) and let R be
the relation ‘divides’ then, R i1s a void
relation since R=¢ < A X A.



6. Reflexive Relation: R i1s a reflexive
relation if (a, a) € R, V a € R. It should be
noted that if 3 any a € A such that a K a.
then R is not reflexive.

For example, let A={1, 2, 3} and R ={(1, 1),
(1, 3)}, then R 1s not reflexive since 3 € A
but (3, 3) € R.

7. Symmetric Relation: R is called a
symmetric relationon Aif (x, ¥) €e R = (y, x)
e R, 1.e., if x 1s R-related to y, then y is also
R-related to x. It should be noted that R 1s
symmetric iff R™' = R.

8. Anti-Symmetric Relation: R is called anti-
symmetric relation if (¢, b) € R and
(b,a) e R=> a=0b.

Thus, if a # b, then a may be related to b or
b may be related to a, but never both.

For example, let N be the set of natural
numbers. A relation R © N X N 1s defined
by:

x R yiff x divides y (i.e., x/y)
Then, x Ry, y R x= x divides y, y divides x
= X=Yy

It should be noted that the set {(a, a) : a € A}
= D is called the diagonal line of A X A.



10.

Then “the relation R in A i1s antisymmetric
iff RN R1cD”.

. Transitive Relations: A relation R in a

set A is said to be transitive if a R b and
bRec=aRcie., if(aq, b)=Rand (b, ¢c) e R
then (aq,¢c) e RV aq, b, ¢ € A.

It should be noted that if a R b, then it is not
necessary that b must be related to some
element, i.e., if L.H.S. of the implication (¥)
does not hold, the relation 1s automatically
transitive.

For example, consider the set A = {1, 2, 3}
and the relations

R, ={(1,2), (1, 3)}; R,={(1,2)} ; R, = {(1, )}
R,={1,2) (2, 1), (1, 1)}

Then R, R, and R, are transitive while R,
is not transitive since in R, (2, 1) € R,
(1,2) € R,but (2, 2) ¢ R,.

For another example, Let A be the set of all
line in a plane R be the relation in A defined
by “is parallel to”. Then if line a is parallel
to line b and line b is parallel to line ¢, then
a is parallel to ¢. Here, R is transitive.
Identity Relation: R is an identity relation
if (@, b) € R iff a = b. In other words, every
element of A is related to only itself.
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It 1s interesting to not that every identity
relation is reflexive but every reflexive
relation need not be an identity relation.
It should be noted that identity relation is
reflexive, symmetric and transitive.
For example,
on the set = {1, 2, 3}
R iy 1) (24 2),03,:3)) 18
the identity relation on A.
Equivalence Relation: A relation R in a
set A is said to be an equivalence relation if
R is reflexive, symmetric and transitive.
(1) Risreflexive, 1.e., for every a € A, (a, a)
e Rie,aRaV aeR.
(11) R1is symmetrici.e., (a,b) e R=(b,a) e
Rie,aRb=bRaVabeA.
(111) Ristransitivei.e., (a,b) e Rand (b, ¢) €
R implies (@, ¢) e Rie,aRband bR ¢
= aRe, whena, b, c € A.
For example,
let A be the set of all triangles in a plane
and let R be defined by “is congruent to”.
We observe that
(1) R is reflexivei.e.,a Ra V a € A. Since
every triangle is congruent to itself.



12,

(11) Rissymmetrici.e.,a Rb = b R a. Since,
if triangle a is congruent to triangle b
then, b i1s congruent to a.

(111) R 1s transitive i.e, aRband b R e¢ =
a R c. Since, if triangle a 18 congruent to
triangle b and triangle b is congruent
to triangle ¢ then, a i1s congruent to
triangle c.

Thus, the relation R defined above i1s an

equivalence relation.

Equivalence classes of an equivalence

relation: Let R be equivalence relation in

A (#¢). Let a € A, then the equivalence class

of @, denoted by [a] or { g } is defined as the

set of all those points of A which are related

to @ under the relation R. Thus [a] ={x € A

: xR a}.

Hence, it 1s easy to see that

(1) belal] = aelb]

(11) b e la] = [a] = [b]

(111) Two equivalence classes are either
disjoint or identical.

For example, we consider a very important

equivalence relation.

x =y (mod n) iff n divides (x —y), n 1s a fixed

position integer. Consider n = 5. Then,



[O]={x:x=0(mod 5)}={bp:pez}={0,15,
5 L § L s —
[1]={x:x=1(mod )} ={x:x-1=5k, k € Z}
= {bk+1:keZ}
= £1,6,11,...,~4,=9, ... }
It should be noted that there are only 5
distinct equivalence classes viz. [0], [1], [2],
[3] and [4], when n = 5.

FUNCTIONS (MAPPING)

-

A function is “a rule” or a “device” or “a
mechanism” which defines some association or
correspondence or relationship between the
elements of two sets.

1. Definition: Suppose that to each element
in a set A there is assigned by some rule, an
unique element of a set B. Such rules are
called functions or mappings. If we let f
denote these rules, then we write f: A > B

or A—LB.

Which reads “fis a function of A into B".
It is interesting to note that every rule works
as a relation but not necessarily as a
function.



An Alternative Definition: Let Rc A X B
1.e., R is a relation from A to B. Then R is a
function if

(1) dom. R =A.

(i1) (@, b),(a,c) e R=>b=c
Terminology: Let [: A — B be a mapping.
Then,

(1) A is called the domain of f.
(iz) B is called the co-domain of f.

(ii1) Ifa € A, then the element in B which is

assigned to a, is called the image of a
and is denoted by f(a). Thusif fla)=b,b
1s called the image of @ and a is called a
pre-image of b.
(Note: image of an element in the
domain A uniquely exists but pre-image
of an element of co-domain may or may
not exist in A and if exist, it may not be
unique).

(iv) Set of all images is called the range of
f. Thus,

Range f={f(a) : a € A} < B.
Range of fis also written as f(A).
Important Deductions: In a function f: A —> B
(1) Each element of the set A must be
associated with unique element of B.




(i1) Two or more elements of set A may be
associated with the same element of
the set B.

(111) There may be some elements of B which
are not assigned to any element of the
set A.

2. Equal Functions: If f and g are functions
defined on the same domain A and if
fla) = g(a) for every a € A, then f=g.

For example,

Llet f:{1,2}—>1{1,2, 3,4}
f=11,1), @2, 3)} and
g : {1, 2} > {1, 3, 4, 5};
g =11, 1), @2, 3)}

Then, since dom. f = dom. g and f(a) = g(a)

for all @ in the domain, f=g.

3. Types of Functions:

(i) Constant Function : letf: A — B. If
fla) = b for all @ € A, then fis called a
constant function. Thus, [ i1s called a
constant function if range f consists of
only one element.

(ii) Into function: l.et f: A — B, if there
exists even a single element in B
having no pre-image at all in A, then



such a function is said to be an into
function.
For example,
Let A= {1,23and B=1{1, 4, 9, 16}
Let f:A->B;f(x)=x*VxeA

A B
1 1
2——>>4
3—>1>9

16

From the figure, it is clear that there exists
an element, namely 16 — B, which has no
pre-image in A. So fis an into function.
(11z1) Onto function (Surjection): A
function f: A — B is said to be an onto
function if each element of B is the [
image of at least one element of A. An
onto function is also called a surjective
mapping. A

: B

In onto mapping, we observe f
that : X
f@I=BVxeA A ] g
Thus, fis onto iff f (A) = B, \ 4, 5>7

1.e., range = co-domain



[Note: A function which is not onto, is called
an into function].

For example, consider f=R - R : f(x) = x°
Then f 1s not an onto function since the
negative numbers do not appear in the
range of f i.e., no negative number is the
square of a real number. So f 18 an into
function.

Important Deduction:

(1) Insome cases, the following method to
test the onto property is useful.
Considera € A, b € Band fla) =b. Find
a in terms of b. If a exists in A forevery
b € B, f1s onto otherwise into.

Illustration: Consider the function

x+1
x—2
Clearly f1is not a mapping in the domain R

f:R=>R:f(x)=

as f(2) = 0 does not exist in R . So dom.

f=R —=1{2}. On this domain, consider
acR-{2},beR,
fla) = b = b=(a+ Dl(a-2)
= ab-2b=a+1
= a=2b+1D/Ib-1)



Thus a ¢ (R —{=2}) for b = 1. Thus 1 is not
image of any member of the domain so fis
into. This method is also useful to find the
range. In the above example f=R — {1}.

(iv) Constant Function: Let f: A —> B. If
fla) = b for all a € A, then fis called a
constant function. Thus [ is called a
constant function if range f consists of
only one element.

(v) One-One Function (Injection): lLet
f: A — B. Then f1s called a one-one
function if no two different elements
in A have the same image 1.e., different
elements in A have different elements
in B. Symbolically, f1s one-one if
fla) = fa')

=> a= a'

e, aza = fla) #f (a)

A mapping which is not

one-one is called many-one.

For example,

let f: R — R:

f (x) = x* Since, f(=1) = (1) =1, f1is not

one-one so 1t 18 many-one.




Important Deductions:

(1) If any line parallel to x-axis in the
graph of the function on cartesian plane
intersect the graph at two or more
points, f must be many-one.
For example, consider the function

y = flx) = x*

Therefore f1s many-one.

(i) Let f(x) = f(v). If solution of this
equation has solution other than
x =y, f1s many-one. For example, let

f:R—R.

X

ﬁ(x): (X_I_l)a

2

2

. x* Y
then f(x) = f(v) gives rl - v+l

= Xy+x*=yx+y°
= xy (- +x-y) x+y)=0



= @-y)@@y+tx+y)=0
= x=yorxy+x+y=0

=

= X=yory=
PO = i1

f 18 many-one.

(vi) Many-one function: [: A — B 1s said
to be many-one function, if two or more
elements of A have the same f image
in B, i.e., if f(x)) = f(x,), x, # x,.

A B
f

\ o1

Many-one into mapping:
Let /: A —> B then
(1) many-one A B

(11) into, then fis called a f
many-one into mapp- \ 54
ing. In this mapping ‘
some elements of B
will remain uncovered.



Many-one onto mapping: A B
Let /: A - B, then f
(1) many-one PEE

(i1) onto, then [ is called -
a many-one onto
mapping.

(vii) Inverse of a function: letf: A > B
and let b € B. Then, the inverse of b,
i.e., [~ (b) consists of those elements
in A which are mapped onto b,
ie., f (B)={x:x¢eA, f(x)=b}.
Therefore, [~ (b) c A. f~' (b) may be a
null set or singleton. For example,
LetA={1,2,3,4B={a b, ¢
Define, f=A — B by f= {1, a) (2, a)
(3, 0), (4, a)}.
Then, f~ (@) = {1, 2, 4}, f7'(b) = (3),
=6
In the same way, if C be a subset of B,
7 (C) is defined by /™' (C)

={x:x €A, f(x) e C}.

Thus, /' is defined as a rule (relation)
from B to A. But then dom. /' < B, i.e.,
' (b) may not belong to some b € B.
Also, [~ (b) may be unique. So f~' may
be a function from B to A.



(viit)Inverse Function: Let /A — B be a
one-one onto function. Then the
function of /™ : B > A which associates
to each element v € B, the element
x € A, such that f(x) = y is called the
inverse function of the function
f:A—> B

Domain of /™' = B and range of [~ = A.

It is easy to see that /™' : B > A is also

one-one onto

A=1{3,4, 5}, B=16, 8, 10}

f:A— B, f(x)=2x, f(3) =6, f(4) =8, f(5)=10

LB A T x)=x/2,f"6)=3,"(8) =4,
f7(10)=5

f=(3, 6), (4, 8), (5, 10)

f~'=(6, 3), (8 4), (10, 5).

The function f™'; B — A is also one-one onto

function.

Uniqueness of inverse function

If f: A —> B is one-one onto function, the

inverse function of f1s unique.



(ix) Composition Function or product
function: Let f: A —>Bandg:B > C
be two functions. Then the product or
composition of the functions f and g,
denoted by g o f, is a mapping of A
into C given by go f: A — C, such that
gof) x)=g (f(x),VxeA.
Illustration: Let [ : A — B, f(x) =
g B—-C, g(x) x*, where

—{13 ={2,6},C= 4361‘)}

GoHM=g(fD)=g@2)=

goNB)=g(B)=g(®6)=

gof) (x)=g (fx)=g (2x) = 4x*

Thus, gof:A—>C,(go)) (x) =4x"
=11, 2), (3, 6)}
g =12, 4), (6, 36);
gof=1(1,4), (3, 36)

Important Deductions:
(1) If O(A) =m, O(B) = n, then total number
of mappings from A to B is n™.




(11)

(i11)
(iv)
(v)
(vt)
(vir)
(viit)
(1x)
(x)
(x1)
(xii)

(x111)

If A and B are finite sets and O(A) = m,
O(B) =n, m < n. Then number of injection
(one-one) from A to Bis "P_ = n!/(n — m)!
If f: A - B is injective (one-one), then
O(A) < O(B).

If f: A > B is surjective (onto), then
O(A) = O(B).

f: A — B is bijective (one-one onto), then
O(A) = O().

et f: A— B and O(A) = O(B). Then [ is
one-one <> it 1s onto.

Letf:A— Band X, X, c A. Then fis one-
oneif f(X, N X)=f(X)N[f(X).
letf:A—>Band Xc A, Y cB. Then in
general [~ (f )X, f(f () Y. Iffis
one-one onto, [/~ (fx) =X, (" (Y)) =Y.
Ingeneralgof#fog.

f:A — B, be one-one, onto, then /" o f=1,
and fof" =1,
f:A—>B,g:B—->C,h:C->D. Then
(hog)of=ho(gol).

f:A—B,g:B— C beone-one and onto,
thengo f:A — Cisalsoone-one onto and
goN'=f"og™

Let/:A— B,thenl of=fandfol =/It
should be noted here that fol, is not



defined since for (fol)) (x) = fo {I,(x)}
= f(x). I (x) exist when x € B and f(x) exist
when x € A.

(xiv) [:A— B, g:B— C are both one-one, then
gof:A— Cisalsoone-one but converse
1s not true i1.e., though g o fis one-one, both
f and g need not be one-one. It should be
noted that for g o f to be one-one, f must
be one-one.

(xv) Iff:A— B, g:B— Care both onto then
g o [ must be onto. However, the converse
is not true. But for g o f to be onto g must
be onto.

(xvi) The domain of the function (f + g) (x) =
fx) + g(x), (f— ) (x) = fx) — g(x), (fQ)x) =
f(x). g(x) 1s given by (dom. ) N (dom. g).
While domain of the function (f/g) (x)
= flx)/g(x) 1s given by (dom. f) n (dom. g)
—x: g(x)=0}.

OPERATION

An operation over a set 1s a rule which combines
any two elements of the set.

Binary Operation: An operation O is called a
binary operationon aset AifaO b e A, a, b € A.



If O is a binary operation on the set A, then
A is said to be closed with respect to the
operation O.

For Example:

(1)

(1)

(111)

If we consider the composition of
multiplication in the set of odd integers,
then it is binary composition, since the
multiplication of two odd integers is an
odd integer i.e.,

5x3=15, 9x5=45

Division 1s not a Binary operation on N,
because 2/3 €N. Thus, N is not closed with
respect to division operation.
Subtraction is a binary operation on the

set of integers I, because ¢ —b <1, for all
a. b 1.

Laws of Binary Operation

(1) Commutative Composition: A compo-

sition in a set A is used to be commutative
if

xo0y = yox, Vx,yeA
For example, 5+14 4+5

5X4 = 4%x5
This shows that addition and
multiplication composition in the set of



integers are commutative. It should be
noted that subtraction 1s not
commutative composition on the set of
real numbers as

a-bzb-a Va beR
eg., 8—2#2-8

(11) Associative Composition: A

(ii1)

composition in a set of elements A 1s said
to be association if
(xoy)oz = xo0o(yo2),Vx,y,zeA
For example, addition in an associative
composition in the set of natural
numbers, as we have
G+2)+4 = 5+ (2 +4) etc.
In general (x+y)+z=x+(y+2)
Vx,v2¢€N
Multiplication 1s an associative
composition in the set of integers, since
5x2)x4 = 5x(2x4)
In general (x Xy) X z=x X (y X 2)
Vx,y,zel
Distributive Composition: If o and *
are two binary composition defined on a
set A, then
(a) * i1s said to be left distributive over o
if



Yodxx=(yxx)0(xx)Vxy zel
(b) * 1s said to be right distributive over
o if.
xx(yo2)=(x+y)o(x+2),Vx,y 2z €A
If both (@) & (b) hold then we say = is
distributive over o.
For example, multiplication is left distributive
over addition in the set of real numbers if
b+e)xa=bxa+cXa,Va b ceR
Multiplication is right distributive over addition
in the set of real numbers if
aXb+co)=axb+axXe Va,b,c €R.
(iv) The binary operation O is said to be
indempotent on a set of element A, if for
every a € A.
aoa=a
(v) Anelementein a set A is said to be a unit
element with respect to the Binary
operation o on A if for every a € A.
aoe=eoa=a
(vi) An element b in a set A is said to be the
inverse element of an element a € A with
respect to the binary operation o if
aob=boa=ellfeexistsin A}
Operation Table: When the set A being
considered has a small number of elements then
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the result of applying the binary operation o to
its elements may be represented in the table
known as operation table. We write the elements
of A in the same order both vertically horizontally.
The result @ o b then appears in the body of table
at the intersection of row headed by a and the
column headed by b.

0 a b C
a b % b
b a c b
{,_I ¢ b a




